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Summary

1.

 

Few examples of habitat-modelling studies of rare and endangered species exist in
the literature, although from a conservation perspective predicting their distribution
would prove particularly useful. Paucity of data and lack of valid absences are the probable
reasons for this shortcoming. Analytic solutions to accommodate the lack of  absence
include the ecological niche factor analysis (ENFA) and the use of generalized linear
models (GLM) with simulated pseudo-absences.

 

2.

 

In this study we tested a new approach to generating pseudo-absences, based on a
preliminary ENFA habitat suitability (HS) map, for the endangered species 

 

Eryngium
alpinum

 

. This method of  generating pseudo-absences was compared with two others:
(i) use of a GLM with pseudo-absences generated totally at random, and (ii) use of an
ENFA only.

 

3.

 

The influence of two different spatial resolutions (i.e. grain) was also assessed for tack-
ling the dilemma of quality (grain) vs. quantity (number of occurrences). Each combination
of the three above-mentioned methods with the two grains generated a distinct HS map.

 

4.

 

Four evaluation measures were used for comparing these HS maps: total deviance
explained, best kappa, Gini coefficient and minimal predicted area (MPA). The last is
a new evaluation criterion proposed in this study.

 

5.

 

Results showed that (i) GLM models using ENFA-weighted pseudo-absence provide
better results, except for the MPA value, and that (ii) quality (spatial resolution and
locational accuracy) of the data appears to be more important than quantity (number
of occurrences). Furthermore, the proposed MPA value is suggested as a useful measure
of model evaluation when used to complement classical statistical measures.

 

6.

 

Synthesis and applications.

 

 We suggest that the use of ENFA-weighted pseudo-
absence is a possible way to enhance the quality of GLM-based potential distribution
maps and that data quality (i.e. spatial resolution) prevails over quantity (i.e. number of
data). Increased accuracy of  potential distribution maps could help to define better
suitable areas for species protection and reintroduction.
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Introduction

 

A variety of  predictive models is currently in use to
simulate the spatial distribution of plant and animal

species (Franklin 1995; Guisan & Zimmermann 2000;
Scott 

 

et al

 

. 2002). Most of the models rely on adjusting
a quantitative relationship between a taxon and its
direct environment. Models have been developed for
plant communities (Brzeziecki, Kienast & Wildi 1993;
Brown 1994; Zimmermann & Kienast 1999), for indi-
vidual plant species (Guisan, Theurillat & Kienast 1998;
Guisan, Weiss & Weiss 1999; Peterson 2001; Bakkenes
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. 2002) and for plant species assemblages and
biodiversity reconstructed from superimposing indi-
vidual species’ predictions (Guisan & Theurillat 2000;
Lehmann, Overton & Leathwick 2002).

These models result in spatial predictions indicating
locations of the most suitable (and unsuitable) habitats
for a target species, community or biodiversity (i.e.
indicating ‘hotspots’). Generalized linear and general-
ized additive models (GLM and GAM), implemented
within a geographical information system (GIS), have
become very popular for predicting such distributions
(Guisan, Edwards & Hastie 2002).

However, as yet relatively few predictive models have
been applied to rare and endangered species (Miller
1986; Myatt 1987; Carey & Brown 1995; Godown &
Peterson 2000; Elith & Burgman 2002), despite their
potential in conservation management, for instance in
identifying sites with high potential for colonization.
This may be because (i) data for rare and endangered
taxa very often consist of a set of observed occurrences
without sites of  observed absences (hereafter called
presence-only data); (ii) data for a single taxon are usu-
ally scarce (few observations); and (iii) often observa-
tions are not associated with any defined sampling unit
(of known surface area) or they lack sufficient locational
accuracy.

The first problem is commonly associated with data
stored in large biological data bases. Such data have
often been recorded by volunteers, usually without
recourse to any predefined sampling strategy. Scarcity
of data is specific to uncommon and rare species, for
which prevalence in a data bank is, by definition, very
low. Historical records, such as herbarium or museum
collections, often lack precise details of location: at best
they show proximity to a common site, a valley or village
at a scale of a kilometre or more. These two problems
make it more difficult to apply the usual statistical
approaches. Such data contrast unfavourably with recent
observations (

 

≤

 

 10 years) sampled using a global position-
ing system (GPS) with a much higher spatial accuracy.

This highlights the dilemma of quantity (number of
occurrences) vs. quality (locational accuracy). When
the spatial accuracy associated with the geographical
location of each observation site is known (e.g. the true
site has a 95% probability of being within a 100-m radius),
it becomes a major consideration in choosing the cell
size (grain) of the study.

The choice of  cell size may be determined by other
criteria. A larger cell size might result in a more man-
ageable data set or might be chosen if  spatial auto-
correlation is measured within the species’ data and, as a
result, observations that cannot be considered inde-
pendent need to be aggregated. In contrast, a smaller
cell size might better represent the ecological processes.
Here, we will focus mainly on situations where spatial
accuracy is known and can vary from one observation
to the other.

Data of varying spatial accuracy can be manipulated
to avoid propagating measurement errors in the model

(Elith, Burgman & Regan 2002) by either (i) aggregat-
ing all data in regular grid cells (or possibly other cell
shapes) whose size still matches the poorest locational
accuracy of observed occurrences, or (ii) dropping the
most inaccurate data. A balance offering the best
sample size vs. accuracy is usually found between these
two options. This is illustrated in Fig. 1, which shows
the decrease in the number of occurrences of the rare
species 

 

Eryngium alpinum

 

 L. (Apiaceae) as the spatial
resolution increases (i.e. decreasing cell size). This is due
to the fact that fewer occurrences have a high locational
accuracy associated with grid cells at high resolution
(fine grain). Lowering the spatial resolution (coarser
grain) allows less precise observations to be made, thus
increasing their overall number. However, such a
decrease is not straightforward because, when lower-
ing the resolution (i.e. increasing cell size), distinct
occurrences can also be aggregated in the same grid cell.
Hence, the choice of method depends on the resolution of
environmental layers available in the GIS, on the biology
of the focus species and on the spatial distribution of its
recorded occurrences.

Such data configuration results in severe limitations
to the fitting of many statistical models, such as linear
models (Guisan, Edwards & Hastie 2002). However,
one alternative is to use models based on presence-only
data. These are called profile techniques, as opposed to
group discrimination approaches that need presence–
absence or abundance data (Robertson, Caithness & Villet
2001). A well-known example of a profile-type model is
the climatic envelope approach developed largely in the
late 1980s by Australian scientists and implemented in
the 

 



 

 package (Busby 1991; now 

 



 

;
Houlder 

 

et al

 

. 2000). Another, more recent, example is
the ecological niche factor analysis (ENFA) implemented
in the 

 



 

 package (Hirzel 

 

et al

 

. 2002; Hirzel,
Hausser & Perrin 2002). However, a common problem
of profile methods is that they tend to generate over-
optimistic predictions, i.e. they predict the species at too
many locations. This is easily understood by the fact
that, from a quantitative evaluation perspective, a

Fig. 1. Number of occurrences of Eryngium alpinum at each
resolution.
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‘perfect’ model with such data would be a model
predicting the species everywhere (i.e. ‘1’ would be
attributed to all cells in the area), as all observations
would be correctly predicted as ‘1’ and no discriminat-
ing absence would be available to restrict the predictions
to zero where needed (i.e. at environmentally inappro-
priate locations).

In this regard, GLM constitute a better choice because
they can deal with many types of predictors (continu-
ous, binary, qualitative, ordinal), but on the other hand
they must have presence and absence data. In order to
use GLM when no absence data are available, one
approach is to generate ‘pseudo-absences’ (Zaniewski,
Lehmann & Overton 2002) and to use them in the
model as absence data for the species. The manner in
which pseudo-absences are generated is particularly
important because it can have a significant influence on
the final quality of the model (Zaniewski, Lehmann &
Overton 2002).

The easiest way to choose pseudo-absences is simply
to generate them totally at random over the study area
(Hirzel, Helfer & Métral 2001; Zaniewski, Lehmann &
Overton 2002). However, this method runs the risk of
generating an absence in an area that is, in fact, favour-
able to the species. Indeed, when dealing with common
species, choosing such a ‘wrong absence’ may not be too
problematical because the numerous presence records
will counteract its effect. However, when working
with rare species, data are often scarce and choosing a
wrong absence could significantly reduce the quality of
a model.

To avoid, or at least reduce, this problem, more sub-
tle methods can be employed to generate the pseudo-
absences. For example, Zaniewski 

 

et al

 

. (2002) first
create a habitat suitability (HS) map of all fern species
(a presence can be the occurrence of any species) using
a GAM with totally random pseudo-absences. Then, a
second set of pseudo-absences are randomly selected
proportionally to the predictions by the first HS map
and used to fit GAM models for every species. Selecting
pseudo-absences proportionally to the overall sam-
pling effort aims at avoiding sampling pseudo-absences
in sites that were under-sampled in the field. However,
multi-species data are not always available. In such
situation, the first map – based on purely random
pseudo-absences – is specific to the modelled species and
pseudo-absences can be selected in areas below a cer-
tain threshold, in order to maximize the discriminating
ability of the second model. The choice of this threshold
must be defined as objectively as possible, for instance
as the lowest value still encompassing 95% of observed
species’ occurrences.

In this study, we propose another way to generate
pseudo-absences, which combines the respective strengths
of ENFA and GLM. It is also a two-step approach, but
uses ENFA instead of  a GLM with totally random
pseudo-absences to calculate the first HS map that
is used to weight the selection of  pseudo-absences.
The calculation of  this first model is particularly

straightforward with ENFA (e.g. no need to select
predictors).

The aims of this study were twofold. The first was to
evaluate different methods for predicting rare species
distribution, using ENFA with presence-only data,
GLM with presence and random pseudo-absences, and
a combination of  both approaches. The second aim
was to assess the dilemma between quality and quan-
tity, trying more specifically to answer the question: is it
preferable to have a large number of observations, which
is better from a statistical point of view, or should one
favour locational accuracy of observations (dropping
all inaccurate ones, thus using a reduced set to calibrate
the model) to ensure a better correspondence with environ-
mental predictors used to predict the observations?
This part of the study was conducted by building models
at two different resolutions (25 and 500 m) having a
different number of occurrences associated with each
(Fig. 1). 

 

Eryngium alpinum

 

 (Apiaceae), a flagship threat-
ened species in the European Alps, was chosen as an
illustration. Finally, results from field investigations demon-
strate the usefulness of such a model for suggesting new
observation sites for rare and endangered species.

 

Methods

 

 

 

Switzerland covers an area of 41 293 km

 

2

 

 and consists
essentially of  two mountain chains with a west–east
orientation: the Jura (highest peak in Switzerland
1607 m a.s.l.) in the north and the Alps (highest peak in
Switzerland 4634 m a.s.l.) in the south, separated by a
lowland corridor, 50–100 km wide, generally referred
to as the Swiss midlands and ranging from about 360 to
900 m a.s.l.

The whole country belongs to a single floristic unit,
the medio-european or subatlantic domain (Ozenda
1982), which also corresponds to a single general cli-
mate of suboceanic type. A large proportion of the rain
carried from the Atlantic Ocean and North Sea is stopped
by the mountains and thus highest annual rainfall
occurs in the Jura and in the northern part of the Alps.
Mean annual temperature is also unequally distrib-
uted, with warm, wet areas in the south-eastern part of
the country (Ticino, southern Alps), warm, dry areas in
the south-eastern part (Valais), and a cooler and wetter
climate characterizing the midlands and the Jura.

 

 

 

Eryngium alpinum

 

, commonly called Alpine Eryngo or
Queen of the Alps, is a perennial hemi-cryptophyte
about 30–100 cm high and easily recognizable by its
cylindrical capitulum surrounded by a large involucre
of huge blue-violet bracts. According to Landolt (1977),

 

E. alpinum

 

 prefers habitat with moist, deep, alkaline
soils rich in nutrients. It also needs full sunlight and
therefore almost never occurs in forested areas.
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Eryngium alpinum

 

 often grows on steep slopes of
the alpine and subalpine belts, in a megaphorb-like
vegetation. In Switzerland, it is found between 1400
and 2100 m, essentially in the pre-Alps (the northern
foothills of  the Alps) of  the cantons of  Vaud, Valais
and Fribourg but some populations are also found in
the cantons of Grisons, Uri and Unterwald (eastern part
of Switzerland). Due to its ornamental features, this
species is also often grown in gardens and cemeteries.
Although the exact reasons for the recent decline of this
species are still unknown, major threats might be pick-
ing, and changes in pasturing practices. The species is
threatened in the whole of Switzerland and appears on
the Swiss red lists of endangered plant species (Moser

 

et al

 

. 2002). The genetic structure and reproductive
biology of  

 

E. alpinum

 

 are the focus of  research to
understand better the causes of its rarity (Gaudeul

 

et al

 

. 2002).

 

 

 

The Swiss Floristic Network (CRSF) in Geneva pro-
vided a large part of the data used in this study. These
data consist of observations of presences only (here-
after referred to as presence-only data) of 

 

E. alpinum

 

 at
known geographical locations. These observations were
aggregated within regular square units of  two grids
covering the country, resulting in 46 and 77 occurrences
for the resolutions of 25 and 500 m, respectively (Fig. 1).
No geographical location of  observed absence was
available at the start of the study.

 

 

 

Hereafter, environmental variables used to predict
species distribution are termed the predictors. On a
mesoscale such as the whole of  Switzerland, direct
environmental predictors such as climate should prove
more powerful than indirect predictors like altitude
(Guisan & Hofer 2003). This is because different climates,
not all of which might be suitable for the target species,

can occur at the same altitude throughout Switzerland.
Due to the need for normality in the ENFA method,
only quantitative predictors were used. As a compari-
son, the same predictors were used to fit the GLM,
although the latter statistical method can theoretically
deal with all kind of predictors.

The following pool of quantitative environmental
predictors was selected according to ecology and data
availability for 

 

E. alpinum

 

 in the ArcGIS software (ESRI
Inc., Redlands, CA, USA) in the case of GLM-based
predictions and in the IDRISI software (Eastman
1997) in the case of ENFA-based predictions (Table 1).

The term pool is used here to indicate that not all of
these environmental predictors were necessarily used
to fit the different models. The original resolution of all
environmental maps was 25 m. That is, over the map of
Switzerland, the data layers were divided into pixels of
25 

 

×

 

 25 m. To predict the species distribution at the
wider resolution of 500 

 

×

 

 500 m, an aggregation of the
25 

 

×

 

 25-m data was performed in ArcGIS by calculat-
ing the average value of the 400 25-m pixels enclosed
within each 500 

 

×

 

 500-m pixel.
In addition, two qualitative environmental variables

providing information, respectively, on main land-use
classes (land-use) and on geology and soil types (sub-
stratum) associated with each pixel were used separately
in a last step, to filter predictions made by the models.

 

 

 

The two statistical methods used within this study were
the ENFA and GLM.

 

Ecological niche factor analysis (ENFA)

 

The ENFA (Hirzel 

 

et al

 

. 2002) is a method based on
a comparison between the environmental niche of
the species and the environmental characteristics of the
entire study area (stored as GIS layers), hereafter termed
the background data. Hence, ENFA only needs a set of

Table 1. Descriptions and abbreviations of the quantitative environmental variables forming the initial pool of predictors. They
were all originally prepared at a resolution of 25 m. The last two rows represent two qualitative variables. A few selected classes
of these were used to filter the final predictions (see text)

Abbreviation Description Unit

slope Average slope of each quadrate %
srad3 Sum of March solar radiation kJ day−1

srad7 Sum of July solar radiation kJ day−1

tave7 Average July temperature °C
rain48 Sum of rainfall from April to August mm
rain49 Sum of rainfall from April to September mm
ddeg300 Sum of daily average temperature above 3 °C °C
topo500 Topographical position with a radius of 500 m m
topo1000 Topographical position with a radius of 1 km m
Landuse Land-use classes (forests, agricultural areas, roads, buildings, rivers, open areas, 

screes, glaciers, etc.), rasterized from a 1 : 25 000 topographic vector map (Vector 25).
43 classes

Substratum Geotechnical map providing information on geology and soil, rasterized 
from a 1 : 200 000 vector map (Geotech)

30 classes
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presence data (no absences are required) and a set of
background GIS predictors. In contrast to many other
predictive methods that can be fitted outside the GIS
(like GLM), ENFA thus requires a dynamic access to
the ecogeographical predictors.

ENFA is similar to a kind of principal component
analysis (PCA) in that it also transforms the original
ecogeographical variables into new, uncorrelated, axes.
However, whereas in PCA the successive axes are
simply selected to match the direction of maximum
variance in the multidimensional ecogeographical
space, ENFA’s principal components all possess a
true ecological meaning for the modelled species.

The first component is called the marginality factor
(MF). It passes through the centroid of all species’ obser-
vations (multidimensional optimum) and the centroid of
all background cells in the study area (mean environmental
conditions). Hence, a high marginality value indicates
that the species’ requirements differ considerably from
the average habitat conditions in the study area.

Several specialization factors (SF) are then succes-
sively extracted from the 

 

n –

 

 1 residual dimensions.
Each SF is calculated in order to (i) ensure its ortho-
gonality to the marginality factor and to the other SF,
while at the same time (ii) maximize the ratio between
the residual variance of the background data and the
variance of the species’ occurrences. A high specializa-
tion indicates that a species has a restricted ecological
tolerance compared with the overall range of condi-
tions that prevail in the study area.

Because most of the information is usually con-
tained in a few first factors (usually the marginality
factor and up to three or four specialization factors),
only these are kept to compute the final HS map. All cells
in the map obtain a HS value that is proportional to
the distance between their position and the position of
the species optimum in the new factorial space.

All ENFA analyses were performed within the

 



 

 software (version 2·1; Hirzel, Hausser &
Perrin 2002). Correlations between all variables in the
initial pool of predictors (Table 1) were calculated prior
to ENFA analyses, in order to determine which vari-
ables should preferably be used in the ENFA. When two
or more predictors had a correlation coefficient greater
than 0·5, only the most proximal (in the sense of Austin
2002) was kept for the ENFA. As ENFA requires nor-
mally distributed data, all environmental layers were
normalized through the ‘box–cox’ algorithm (Sokal &
Rohlf 1981). Although several variables did not recover
normality after the box–cox normalization, ENFA is
not considered too sensitive to such violation (Hirzel

 

et al

 

. 2002).

 

   

 

(

 



 

)

 

GLM (McCullagh & Nelder 1989; for HS application
of GLM see Guisan, Edwards & Hastie 2002) are an
extension of the classical multiple regression, allowing
non-normal response variables to be modelled. GLM

were used in our case to model presence–absence of the
species. As absences were not available in the original
data set, pseudo-absences were generated in various
ways (see below). All GLM were fitted within the R
software (R 1·4·0; A Language for Data Analysis and
Graphics ©2002), by specifying a binomial distribu-
tion and a logistic link function, as similarly done for
other presence–absence data in ecological studies (Guisan,
Weiss & Weiss 1999; Manel, Dias & Ormerod 1999;
Guisan & Hofer 2003; also called logit regression).

Selection of  predictors (and their possible trans-
formations, e.g. polynomial terms) is certainly the most
important and difficult step when fitting a GLM. As the
number of combinations is too great to test all of them,
we used a custom stepwise selection procedure pro-
grammed in R that offers the best-suited combination
of predictors, even with large data sets. A first explor-
atory analysis of the different predictors based on uni-
variate GLM (i.e. fitting a single predictor at a time but
allowing polynomial terms to be considered) showed
that all response curves were at most of a 

 

y

 

 = 

 

x

 

 + 

 

x

 

2

 

 type,
providing a basis for ignoring polynomial terms higher
than quadratic. In a second step, GLM were fitted to all
possible pairs of uncorrelated predictors (and their square
term if  significant) and the reduction of deviance was
tested and recorded in each case. The pair of predictors
causing the highest deviance reduction was kept. In the
third step, deviance reduction was tested on each pair of
predictors previously selected, adding the remaining
predictors one at a time. Again, the trio expressing the
greatest deviance was kept. Finally, step three was repeated
until the addition of any predictor, and possibly its square
term, was no longer significant. This procedure is close
to forward stepwise selection, although a significant
difference is that the pair of  predictors (among all
possible pairs) causing the highest deviance reduc-
tion is entered first in the model, and the same rule further
applies to the selection of  the following predictors in
the formula.

The best combination of predictors was considered
to be the one that expressed the greatest amount of
deviance while having all terms in the equation below a
significant level (

 

P

 

 

 

≤

 

 0·05) of deviance reduction (chi-
test in the case of binomial models).

 

  

 

Three methods were used to model species’ distributions
from presence-only data (i.e. without observed absences):
(i) ENFA; (ii) GLM with randomly chosen pseudo-
absences, hereafter called GLM-R; and (iii) GLM with
ENFA-weighted pseudo-absences, hereafter called GLM-
ENFA (Fig. 2). To assess the importance of quantity
vs. quality, these models were all fitted with data pre-
pared at the two resolutions of 25 m and 500 m.

The generation of pseudo-absences was done in two
ways. (i) Totally at random: geographic coordinates were
chosen at random over the Swiss territory. (ii) Weighted
by ENFA predictions: in this case, coordinates were
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also chosen at random, but only in areas where predic-
tions by the prior ENFA model for 

 

E. alpinum

 

 were
lower than 0·3. This threshold was chosen because it
was slightly lower than the lowest ENFA prediction of
0·33 associated with observed presences.

In each case, the number of  generated pseudo-
absences was the same as the number of real presences,
namely 45 for the 25-m resolution and 77 for the
500-m resolution (Fig. 1). In addition, pseudo-absences
were never chosen in pixels having a value for land-use or
substratum that was incompatible with the presence of

 

E. alpinum

 

, because these areas were removed later on
during the filtering procedure. Moreover, as particular
environmental factor values can sometimes be asso-
ciated with these incompatible areas (e.g. glaciers usually
have lower temperatures than surrounding areas) this
might reduce the discriminating power of  the model
(i.e. the model will differentiate between suitable
and very unsuitable locations but will not highlight
finer variants in more or less suitable areas). Pseudo-
absences were then combined with real presences into
a single presence–absence data set ready to use in a
binomial GLM.

Because chance plays a part in the choice of the pseudo-
absences, each modelling procedure was repeated 1500
times (for both types of pseudo-absence and for both
resolutions, 25 and 500 m). For each of these procedures
(4 

 

×

 

 1500 = 6000 in total) the custom stepwise selec-
tion was performed, ensuring that the best predictor
combination was selected for each data set (as they all
differed in their pseudo-absences).

Finally, qualitative environmental data (i.e. land-
use and substratum layers) were used to filter the
ENFA-based and GLM-based predictions in order to
eliminate those areas where 

 

E. alpinum

 

 is unlikely to
grow, e.g. urban areas, forests or glaciers. Such end-
process filtering was performed by setting the model

predictions to zero where unsuitable land-use and
substratum classes occurred.

 

 

 

The following evaluation measures were calculated
for each of the 1500 GLM fitted on each presence/
pseudo-absence data set, at each resolution.

 

Explained deviance (adjusted-

 

D

 

2

 

)

 

This is the percentage of  deviance (i.e. variance in
GLM) explained by the GLM. This measure expresses
the fit of the model, weighted by the effective number of
degrees of freedom (i.e. taking into account the number
of predictors and the number of observations) used to
build the model (Guisan, Weiss & Weiss 1999).

 

Best kappa (B-kappa)

 

The kappa coefficient (Cohen 1960; Fielding & Bell 1997)
was calculated for all thresholds between zero and one
by increments of 0·05. The greatest value was kept as
the ‘best kappa’ value (Elith 2002). This measure
expresses the best possible agreement not obtained
randomly between two qualitative variables (of which a
binary variable is a particular case).

 

Gini coefficient (equation 1)

 

This is a transformation of the area under the curve
value (AUC), obtained by the receiver-operating char-
acteristic plot method (ROC-plot; Fielding & Bell
1997), so that values have a wider range than the AUC
(Hand & Henley 1997; Copas 1999):

Gini coefficient = 2 

 

×

 

 (AUC 

 

− 

 

0·5) eqn 1

Fig. 2. The three methods used to produce habitat suitability maps: ENFA, GLM with totally random selected pseudo-absences,
and the combined GLM-ENFA method where the pseudo-absences are weighted by the result of the ENFA.
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The Gini coefficient as used here is an extension of
its original use to describe income disparity. It will
usually vary between zero (for an uninformative model)
and one (for a model with perfect discrimination), but
exceptionally it could be negative for cases where the
model tends to make higher predictions at absence sites
(i.e. the model is worse than chance; J. Elith, personal
communication).

 

Minimal predicted area (MPA)

 

The minimal predicted area (MPA) is the minimal sur-
face obtained by considering all pixels with predictions
above a defined probability threshold (e.g. 0·7) that still
encompasses 90% of the species’ occurrences (see more
explanation below).

To our knowledge, the MPA measure has never been
used before and requires more explanation. Indeed,
when evaluating HS maps using presence-only data, a
map predicting presence of the species everywhere would
show the best evaluation (because all presences would
then effectively be predicted as presences), but such a
map would be useless. The idea behind MPA is based
on the assumption that a good HS map drawn from
presence-only data should predict a potential area that
is as small as possible (rule of parsimony) while still
including a maximum number of  the species’ occur-
rences. For each model, predicted values were attributed
to all occurrence sites and the value (e.g. 0·7) above
which 90% of  occurrences were observed was used
as a threshold to reclassify the probability HS map
into presence/absence (1/0). The positively predicted
area (defined by the ‘1’ only, when greater than 0·7) cor-
responds to the ‘minimal predicted area’. All MPA
values were calculated before the filtering operations
because we wanted to assess performances of  the
statistical models only.

As no independent presence–absence data set was
available, a common situation with rare species, best
kappa and Gini coefficient were calculated on pseudo-
independent presence/pseudo-absence data sets gen-
erated through a ‘leave-one-out’ jack-knife procedure
(Jaberg & Guisan 2001). These two measures could
not be calculated in the case of simple ENFA models,
because no pseudo-absences were necessary for build-
ing these models. This is a recurrent problem encountered
when evaluating model predictions with presence-only
data. As a result, MPA was the only evaluation measure
available for ENFA models.

The evaluation of GLM-based methods (i.e. GLM-
ENFA and GLM-R) was performed on each of the 1500
generated data at both resolutions using the four
evaluation measures, whereas the evaluation of  the
ENFA was performed on the single HS map calculated
at each resolution. Hence, evaluation values of GLM-
ENFA and GLM-R approaches are best provided in
the form of  box-plots while ENFA evaluations are
represented by single values (bars) in the MPA graphs
(Fig. 3).

 

    


 

We further tested whether those models (out of the
1500 runs for each of the four GLM experiments) that
obtained the best evaluation for explained deviance, best
kappa and Gini coefficient, were also those that obtained
the best MPA evaluation. To test this, correlation
coefficients (Spearman) were calculated between the
ranks given to each model by the different evaluations
for both GLM-ENFA and GLM-R at both resolutions.

 

      

 

The final goal of  our study was to predict and dis-
cover new populations of 

 

E. alpinum

 

. For this purpose,
we selected the GLM-ENFA model that obtained the
best average value for explained deviance, the best
kappa and Gini coefficient (i.e. a rank classification was
made for each of these evaluation measurements and
the model with the best average rank was chosen).
This model was implemented in the ArcGIS software
and the resulting probability map was filtered with the
discriminating classes of qualitative predictors (filters)
to remove areas where the presence of  

 

E. alpinum

 

was highly improbable (i.e. with no occurrence ever
recorded).

The predictions of  the models that fell within the
following types of  land-use classes were set to zero:
forests, urban and agricultural areas, lakes and rivers,
glaciers, swamps and other areas transformed by humans
(i.e. gravel pits, dams, etc.). The same operation was
performed using the substratum map, and only seven classes
of limestone and marly substratum were considered
suitable for the species, all others being set to zero.

 

Results

 

Correlations between environmental predictors cal-
culated at the 25-m resolution were very similar to
those calculated at the 500-m resolution, so that the
predictors retained by both ENFA analyses were
the same. They were: slope, srad3, ddeg300, rain49 and
topo500 (for their descriptions see Table 1).

The HS map was obtained by considering the
first two components of the ENFA, which expressed,
respectively, 92·8% and 88·1% of the variance at the res-
olutions of 25 m and 500 m. MPA values obtained for
the two ENFA HS maps are given in Fig. 3d. For the
two types of GLM models, box-plots in Fig. 3 show the
distribution of (a) explained deviance (

 

D

 

2

 

), (b) best
kappa value (B-kappa), (c) Gini coefficient (Gini) and
(d) MPA.

A Wilcoxon rank test confirmed that, for all these
evaluation values, the averages were significantly
different (

 

P

 

 < 0·01) between the following pairs of
models: GLM-ENFA 25 : GLM-R 25, GLM-ENFA
500 : GLM-R 500, GLM-ENFA 25 : GLM-ENFA 500
and GLM-R 25 : GLM-R 500. The number indicates
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the spatial resolution considered. Correlations between
the different measures of evaluation calculated for each
fitted model at each resolution are given in Table 2.

Based on the cartographic implementation
(potential map; Fig. 4) of  the GLM-ENFA model at
a resolution of  25 m, four new populations of  the
species were discovered in the field, all of them in pixels
characterized by a high to very high habitat suitability
(probability values of 0·98, 0·93, 0·92 and 0·79).

 

Discussion

 

The first goal was to compare two existing and one new
approach to predicting rare species with presence-only
(occurrence) data. Due to the lack of true absences, a

formal comparison between ENFA and GLM-based
methods (i.e. GLM-ENFA and GLM-R) is difficult.
Indeed, in our study, MPA is the only evaluation meas-
ure available for comparison. Results show that the HS
maps obtained with ENFA predict a MPA value that is
approximately twice the mean of the GLM-based
methods, both at the 25-m and 500-m resolutions
(Fig. 3d). This result seems to confirm the tendency of
ENFA to over-predict species distribution (Zaniewski,
Lehmann & Overton 2002), due to the lack of discrim-
inating absences, as discussed in the introduction.
Another possible explanation of the apparent (but not
proved) lack of accuracy of ENFA models could result
from a violation of the assumption of normality of pre-
dictors that is required by the ENFA algorithm, as

Fig. 3. Box-plots of the four evaluation measures calculated for each method of creating HS maps: (a) explained deviance in per
cent (adjusted for the effective number of degrees of freedom); (b) maximum kappa value; (c) Gini coefficient; (d) MPA value (in
103 km2). Values for ENFA are only shown for MPA as other values could not be calculated because of the lack of real absences.
On graphs (a–c), the higher the value of evaluation, the better the model. On graph (d), the lower the MPA the better, but in
conjunction with the highest possible value for the evaluation measures (a–c).
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many of our predictors were actually not normally dis-
tributed (Kolmogorov–Smirnov goodness-of-fit test).
Further testing would be needed to assess the robust-
ness of ENFA (Hirzel, Helfer & Métral 2001, Hirzel

 

et al

 

. 2002) in such circumstances. This situation is
likely to prevail in many other similar studies.

However, although we observed a large difference in
MPA values between ENFA and GLM-based methods,
it should not be concluded that the latter methods
always prove better than the former. For instance,
Hirzel, Helfer & Métral (2001), using a virtual species
with known absences in a real landscape, have shown
that ENFA can prove superior to GLM in the specific
case of invading species (for their quantity of seed,
expansion power and spread, as well as considering the
virtual species’ predefined niche), i.e. when species do

not yet occupy all their potential habitats in the land-
scape. This might be less likely to be the case for many
rare and threatened species, which tend to occupy most
of their potential habitats, as these have usually been
drastically reduced and, as a result, cover only a small
proportion of the territory. However, although 

 

E. alpinum

 

is truly a rare species (in the sense of  Rabinovitz 

 

et al.

 

1986), it always yielded rather large predictions (com-
pared with other species; O. Broennimann & A. Guisan,
unpublished results), which might suggest either that
its habitat is spatially not so restricted and that other
reasons (like cutting) have limited its occurrence in the
past, and/or that important environmental predictors
are missing. None the less, the results suggest that
the performance of  these methods also depends on
the type of organisms being modelled, on the type of

Table 2. Spearman rank correlation coefficients between the different evaluation values calculated for each fitted model. The
correlation values are averages of the correlations obtained for GLM-ENFA and GLM-R methods at both 25-m and 500-m
resolutions (n = 2 × 2 × 1500 = 6000 models)

Explained deviance Best kappa value Gini coefficient MPA

Explained deviance 0·76 0·87 −0·01
Best kappa value 0·74 −0·21
Gini coefficient −0·12
MPA

Fig. 4. (a) Potential distribution map for Eryngium alpinum in Switzerland drawn from one of the GLM-ENFA models at a
resolution of 25 m. Black and dark grey tones indicate highly predicted areas, white circles indicate real presence points used to
generate the map and white stars represent two new populations of the species discovered in the field. Highly predicted areas tend
to be located in mountainous regions with higher rainfall (Jura and northern part of the Alps), which is consistent with the ecology
of E. alpinum. (b) Magnified map showing the locations (star symbols) of the four new populations. Note that these are located
within highly predicted areas (see text).
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environmental predictors that are being used, and on
the grain and extent considered.

Further comparisons were possible between GLM-
ENFA and GLM-R because absence data were included
in their evaluations. However, care should be taken when
interpreting these results, as such evaluation measures
are based on pseudo-absences and not on observed
absences. This is a recurrent limitation of evaluating
models based on occurrence data and a research area
where progress is still required.

The three first evaluation measures (Fig. 3a–c) are
consistent with each other, showing that GLM using
ENFA-weighted pseudo-absences provide signific-
antly better results on average (Wilcoxon rank test)
and less deviance than those using randomly chosen
pseudo-absences. This is true at both the 25-m and 500-
m resolutions, which confirms that choosing pseudo-
absences in an ENFA-weighted way rather than totally
at random will enhance the accuracy of an HS map.

Interestingly, results from MPA measures were not
consistent with the other evaluation measures. Indeed,
we did not expect such consistency because the MPA
concept is based on the parsimony criterion that ‘the
smaller the potential map the better the related model’,
which does not necessarily fit the mathematical cri-
terion of statistical evaluations. At the higher resolution
(25 m) GLM-R models provided a smaller MPA aver-
age value (remember that for MPA, the smaller the
value the better the model) and a smaller deviance,
whereas at the lower resolution (500 m) GLM-ENFA
models obtained a similar average MPA value as GLM-
R models, but showed a much larger deviance.

Furthermore, the comparison of the four evaluation
measures, based on all individual model predictions
(1500) in each GLM experiment (two types of GLM at
two resolutions), did not show any correlation between
MPA and any of the three quantitative measures (D2,
B-kappa or Gini). We do not believe that these results
imply that MPA is a non-reliable value because the rule
of parsimony used in MPA has a practical justification
in conservation ecology, especially in the case of rare
species that are, by definition, not widely distributed.
Hence, further research is needed, at least in the case of
these species, to assess whether the best HS map would
not be the one that maximizes quantitative evaluation
statistics while at the same time minimizing the pre-
dicted area. One identified limitation to the generalized
use of  MPA might be that it fails to evaluate appro-
priately those potential maps produced by certain
modelling techniques, such as  (Busby 1991),
as this type of  model always fits the maximum pos-
sible predictions at observed presence sites (J. Elith,
personal communication).

The second goal of this study was to determine
whether it is preferable to use (i) less data with higher
spatial accuracy or (ii) more data with lower accuracy.
Comparing the evaluations of  the 25-m and 500-m
resolution HS maps reveals that averages for all these
evaluation values are always better with the 25-m

resolution. Overall, this conclusion is still valid when
considering the three different types of models, GLM-
ENFA, GLM-R and ENFA, although their deviances
do not differ significantly.

The lower performances observed at the 500-m
resolution could result from the combination of three
factors. First, a loss of information is inevitable when
aggregating environmental maps. Secondly, the low
accuracy associated with some species’ occurrences
used at this resolution might still be underestimated
and a greater measurement error (as defined by Elith,
Burgman & Regan 2002) might actually prevail in the
data. This is less likely to occur in the case of observa-
tions that have a higher spatial accuracy. Thirdly, plants
being fixed organisms, they are highly influenced by the
local microclimate. Therefore, relating species data that
have a high geographical precision (of site location)
with high-resolution environmental data should have a
better predictive power because they reflect very local
ecological conditions, while aggregated data reflect
smoother environmental gradients in the area (e.g. meso-
climate). Furthermore, some important combinations
of environmental predictors might not be appropriately
expressed in such aggregated data.

In turn, such superiority of higher resolution pre-
dictors and less data might not be true for non-fixed
organisms, as the required resolution for these is cer-
tainly dependent on a larger home range of target spe-
cies, as suggested for bats by Jaberg & Guisan (2001).
None the less, many of our potential maps have spatial
predictions that cover a large proportion of the moun-
tainous areas of Switzerland, even those with a good
evaluation. This primarily reflects the fact that large
areas are probably truly suitable sites for the target spe-
cies E. alpinum, from the single perspective of those
predictors that were used to build the model. Other fac-
tors, not included in the model but which might poten-
tially have a more direct influence on plants (i.e. more
proximal in the sense of Austin 2002), probably account
for the unexplained spatial variation, and thus could
enhance map precision. The problem remains, however,
that data on many of these very important environmental
factors, such as nutrient content in soils or precise physio-
logically meaningful microclimatic measurements, are
still difficult to obtain in a spatially explicit way.

The best option for improving the HS maps would
certainly be to obtain additional data for the target
species, but this is difficult in the case of  rare species.
HS maps prove particularly useful in this regard, by
suggesting new sampling sites for the species, such as
those pixels of high prediction values that are not in the
close vicinity of an observed population of the species.
Visiting such suggested sites in the field at the optimum
flowering time for the species may produce new pres-
ences or, at least, attested absences. This was done at
the end of our study and four new populations of E.
alpinum were found at sites of high predicted probabil-
ity of presence. Such new data should then optimally be
used to refine the models and generate new predictions
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that will need to be verified in the field. Theoretically,
reiterating such processes should lead to equilibrium,
when new data (presences or absences) no longer con-
tribute to improvement of the model (reaching a plateau).

Another solution for improving the accuracy of HS
maps could be to refine the choice of pseudo-absences.
In this study, the GLM-ENFA method was indeed
used in a relatively simple manner. We used the ENFA
predictions to divide the study area into two parts, one
with probabilities of presence greater than 30% and the
other with lower probabilities. Pseudo-absences were then
randomly chosen in the latter category. A more subtle
way of  choosing the pseudo-absences could be, for
instance, to stratify their distribution along a suitability
gradient, like mean annual temperature. This could be a
more precise method for choosing suitable areas.

However, an alternative exists to the process of
selecting as many pseudo-absences as there are pres-
ences (usually a very limited number), and ideally
repeating the process a number of times (e.g. 1500).
This might be to sample, once only, a larger number of
pseudo-absences (say 10 000) and to assign a weight, w
= k /10 000, in the GLM to each, so that the sum of the
weight of  all pseudo-absences adds up to give the
number of  presences k (i.e. ensuring a prevalence of
0·5) (M. Wisz, personal communication). This could
prevent the inherent risk of  inappropriately choosing
a limited number of pseudo-absences (i.e. providing a
low fit) when only one selection run is made.

Our third goal was to use these maps for suggesting
new sampling sites for rare species. Although this study
was not focused on this particular application of pre-
dictive models, a preliminary field campaign based on
the selected HS map (Fig. 4) led to the discovery of four
new populations of  this highly endangered species.
Indeed, this is a very promising result that strongly sup-
ports the use of predictive habitat distribution models
for nature conservation planning.
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